HOME

XML STANDARDS

The Case for XQuery

WRITTEN BY JERRY KING

AuTHoR Bio

Jerry King leads
DataDirect's XML

I: DATA MANAGEMENT @ CONTENT MANAGEMENT &(Im ENTERPRISE SOLUTIONS g E:

Products group and s
responsible for bringing
the company’s innovative
XML technologies to
market. When not

pondering the emerging,

XML LABS

XML market, Jerry enjoys|
life in the great state!

of Maine.

XML adoption is growing steady

ML use is widespread across

modern information systems in

all industry, government, and ac-
ademic sectors. The core technologies for
processing XML (XML, XSLT, XPath, XML
Schema, and others) are maturing steadi-
ly - thanks to support from standards
bodies like the W3C and OASIS, and from
major industry players such as IBM, Mi-
crosoft, and Oracle. XML is also the basis
for a growing body of industry standards
for data exchange, and it is well on its way
to becoming a mainstream technology
for data integration. XML is transforming
not just data - it is transforming informa-
tion processing in general.

However, XML as we know it today is
not the whole answer. It is simply a way
to represent data in a self-describing
format that is easy to interpret across
diverse systems. The demands of today’s
advanced data integration challenges
require a flexible XML standard for data
aggregation and transformation, one
that can seamlessly work with relational
and legacy data sources, as well as new
Web service technologies.

XQuery Unlocks the Power
of XML

One of the most recent developments
in XML is the emergence of a native XML
query and transformation language
— XML Query, or XQuery. XQuery is under
development by the W3C and is nearing
Candidate Recommendation status.

Even now, XQuery is poised to become
the standard query language by which
enterprises access and manipulate dispa-
rate data and content repositories. With
XQuery, the query and transformation
logic operates on XML views of the data.
It does not depend on the data’s physical
structure. If this approach to data query
and manipulation sounds familiar, it is:
in SQL, a query describes in a declarative
fashion the mapping between a set of in-
put tables, and the output table, or result.
The underlying data provider (a JDBC
driver, a database client, and so on) takes
the SQL and executes it against the rela-
tional database. To varying degrees, the
application is thereby shielded from the
underlying database platform. XQuery’s
similarities to the SQL paradigm can only
help speed its adoption.

One important difference is that in
SQL, everything has to look like a rela-
tional table, no matter how it is stored
physically. In XQuery, you can have
completely different storage systems
and wildly different data structures, and,
as long as the underlying data can be
exposed as XML, it all still works.

XQuery Simplifies Data
Integration

XQuery is designed to support
multiple XML information sources as
input. An XQuery program’s primary
functions are to select, filter, transform,
join, and aggregate data across multiple
data sources. The trick is that these data
sources must be represented to the

XQuery program as XML. Fortunately,
there are also several products on the
market, including Stylus Studio, that
provide visual tools for building adapters
that transform non-XML data sources
(flat files, EDI, relational databases, and
others) into XML. The net result is that a
developer using current technology can
build an XQuery program to join or ag-
gregate data from diverse data sources,
and produce XML as output. That
XQuery program can then be deployed
as a Web service that can be imported
into another XQuery program, one that
creates a composite view by combining
this data source with other data sources
in its integration scheme. This is just
one example of the value of reusable,
standards-based XQuery code.

XQuery’s inherent data integration
capability makes it a powerful tool for
the modern application developer. Take
service-oriented architecture (SOA)
applications, for example. Data integra-
tion in the emerging SOA world means
dealing with data from multiple sources
(relational databases, XML files, legacy
applications, and Web services, to name
a few). XML is the perfect language for
uniformly expressing all of this data, and
XQuery is the easiest and most powerful
way to process it.

To best appreciate the problem
XML and XQuery solve, consider how
much time developers today spend
dealing with dynamic requirements for
inter- and intra- enterprise information
flows that must be integrated, current,

m NoOVvEMBER 2005

www. XML-JOURNAL.com



and correct. A prime example of this can be
seen in supply-chain management applica-
tions and the many other applications that
integrate data from various sources in order
to present unified customer and product
information.

Building this data integration logic can
be a costly, complex, and time-consuming
process — some analysts believe that up to
70 percent of the effort on a typical systems
integration project is devoted to “hand-
coding” data-level integration logic. What's
more, this code is very sensitive to any kind
of change in the environment or even in the
intended application usage. The net result is
that developers often end up writing throw-
away code — and spending 70 percent of their
time doing it.

XML solves some of this problem by pro-
viding a lingua franca for data integration.
To this end, XML Schemas exist for almost
every industry sector imaginable to facilitate
data exchange within organizations, as well
as among customers, partners, distributors,
and suppliers.

Even with XML, many developers are
using hand-coded programming approaches
that incorporate Java, DOM, XPath, XSLT, and
other methods, all in an effort to query and
manipulate XML data. Low-level approaches
like DOM are difficult to write and maintain
because the query expressions, the aggre-
gation, and the transformation logic to be
evaluated (the what) are so tightly bound to
the underlying query processing strategy (the
how), that even small changes in application
requirements can require substantial recod-
ing efforts.

XQuery greatly simplifies XML query-
ing and transformation by virtue of its
simple and concise syntax. In addition, the
developer who is using XQuery works with all
data as an XML abstraction and can expect
the underlying XQuery implementation to
deal with accessing the physical data sources
appropriately.

XQuery Will Simplify SOA
Data Services

A key value proposition of SOA is the
idea of creating loosely coupled, composite
applications to bridge existing information
systems and brand-new applications. Adher-
ence to SOA principles also often requires
the ability to aggregate and transform legacy,

relational, and XML data sources to expose
new federated views of data — usually as
XML - that can be consumed by higher-level
applications. To this end, XQuery may well
emerge as a preferred method for building
data-level SOA data services.

Developers building these data services
will find that XQuery greatly simplifies data
aggregation and transformation logic. This
task will also require the ability to abstract
relational and XML data sources to ease
integration challenges. XQuery, fortunately,
provides the foundation for vendors to de-
liver tools and components that do just this.

Vendor Solutions for the Future
XQuery World Are Emerging

For example, products that can provide
unified data access across XML and rela-

“XMLis
transforming
not just data -
it is transforming
information
processing
in general”

tional data, such as Data Direct XQuery, will
be in high demand by developers tasked with
assembling XQuery-based data services. A re-
lated specification — XQuery API for Java, XQJ
—will provide a standard interface for easily
embedding these XQuery programs in any
Java program, much as JDBC does for SQL.

Of course, performance will be another
key factor in XQuery’s adoption. Performance
of data integration logic can be unacceptable
in many cases due to the excessive network
traffic and local memory consumption need-
ed to process queries across disparate data
sources. There are many products on the
market today that deal with this problem by
offering server-based solutions that separate
the data integration logic from the applica-
tion. Many of these platforms are XML-aware
and have plans for supporting XQuery.

For example, Microsoft, IBM, and Oracle

have all staked out a position in the XML
world so that by morphing their respective
databases at the API level, their platforms
can easily serve as big and fast file servers
for any data type. In this world, XQuery is a
natural API for accessing the disparate data
types stored in those servers, as well as for
accessing external data sources such as file
systems and WebDAV repositories. XQuery
implementations from integration vendors
like BEA, Ipedo, Actuate, and OpenLink are
also on the market today. The good news is
that many vendors are actively developing
useful products and helping promote the
use of XQuery. The bad news is that some of
these vendors are using proprietary XQuery
extensions and highly purposed implemen-
tations to deliver working products, with the
unfortunate result that the XQuery services
offered by these vendors are bound within
the context of their platform-based solutions.
Other solutions coming to market will
offer XQuery- and XQJ- compliant data
access technology as an embeddable, high
performance component. Interestingly, the
DataDirect Technologies’ XQuery implemen-
tation will expose as XML the relational data
stored on any of the major database plat-
forms. In other words, using relational data
in an XQuery will not be dependent on the
database vendor’s support of XML. Also, Data-
Direct XQuerywill provide hard-to-match
performance benefits by pushing much of the
distributed query and join operations to the
underlying relational database platforms in-
volved in the query. This fast and lightweight
approach to data integration will be a natural
fit for developing rich, data-level SOA services.

Summary

XQuery promises unprecedented produc-
tivity for developers solving data integration
problems. Delivery on that promise by W3C
and industry stakeholders will be the key to
XQuery’s success. As this article discussed,
there are many arguments for the success of
XQuery as a widely adopted programming
language: ease of use, similarity to SQL, the
demand for data integration, enhanced
developer productivity, an active vendor
community, interoperability with legacy
data, and widespread use of XML are just a
few of them. t:’

. jking@datadirect.com

www. XML-JOURNAL.com

NovVEMBER 2005



